PROPAGATION OF SPHERICAL AND CYLINDRICAL BLAST
WAVES IN A NONHOMOGENEOUS ATMCSPHERE
WITH COUNTERPRESSURE TAKEN INTO ACCOUNT

V. A. Bronshtén UDC 534.222.2

We present an approximate method for calculating the propagation of a weak spherical or
cylindrical shock wave (with counterpressure taken into account) into a nonhomogeneous ex-
ponential atmosphere. In the case of a cylindrical wave with an arbitrary orientation of the
cylinder axis the three-dimensional problem is reduced to a two-dimensional one upon in-
troducing the principle of planar sections, i.e., motions of the gas along the cylinder axis
are neglected. By means of a parametrization with respect to the positional angle the two-
dimensional problem is reduced to a one-dimensional one. To solve the one-dimensional
problem, we use the method of "parallel layers™: the atmosphere is partitioned into a num-
ber of parallel layers of small thickness in each of which the atmosphere may be consid-
ered to be homogeneous, and the passage of the wave through a boundary of the layers may
be regarded as a passage across the boundary separating two media.

The problem of the propagation of strong cylindrical and spherical blast waves into a nonhomogeneous
atmosphere has been considered repeatedly by many authors [1-5]. However, not infrequently, situations
arise in practice wherein counterpressure can no longer be neglected, i.e., the wave cannot be considered
to be strong.

A classical example of a case of this kind was the flight and explosion of the Tunguska meteorite
[6, 71, which resulted in the appearance of a quasicylindrical ballistic wave and a spherical blast wave
whose joint effect was the continuous uprooting of a forest over an area of 2000 km?. The majority of au~
thors estimate the height of the point of explosion in the range of 5 to 10 km, the energy of the explosion in
the range of 10 to 40 megatons or (4 to 10) -10% ergs. Under these conditions the blast wave reaches the
surface of the earth considerably weakened so that the excess pressure Ap/p;< 1.

The problem so stated is not self-similar. We propose to solve it here by an approximate method,
one which we shall refer to as the "method of parallel layers."

We consider first the propagation of a spherical wave. We denote the height of the point of explosion
by Hy, the height of the homogeneous atmosphere by H*, the angle which the direction of propagation of the
wave front makes with the vertical by 9, and the distance from the point of explosion by ry (Fig. 1). Although
the problem is, strictly speaking, two-dimensional, it may be reduced to a one-dimensional problem by
means of a parametrization with respect to the positional angle 9. As long as the wave may be regarded as
strong, i.e., as long as py/p; = 40 [8], we apply one of the solutions for strong waves [1-4]. For the further
treatment of the problem, we proceed in the following way. -

We partition the atmosphere into a series of parallel layers of thickness AH. We consider the at-
mosphere inside each layer to be homogeneous, and for the propagation of the wave into it, we apply one of
the approximate formulas derived for the case of propagation of a weak shock . wave info a homogeneous
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atmosphere.* Formulas of this kind, for example, were derived
in [8]; they give good agreement with the exact results obtained
by humerically integrating the differential equations [9].

We now change over to dimensionless variables, express~
ing the distance from the point (axis) of the explosion as a frac-
tion of a dynamical length ry

ro=(E/p’, E=r/r, @)

where E is the energy of the explosion {energy per unit length
in the case of the cylindrical wave), py is the undisturbed air
pressure at the height of the explosion, and » = 2 or 3 for a cyl-
indrical or a spherical wave, respectively. Also, we let q be
the relative excess pressure at the jump

Fig. 1

9= {(ps— P/ P (2)

We assume that in the homogeneous atmosphere there exists between q and £ a relationship of the
form g = g{¢), which we consider as known. We consider the passage of the wave through the boundary of
two layers as a passage through the boundary of two media. In addition. both the pressure p, at the wave
front as well as the pressure p; of the undisturbed gas increase by means of a jump. Denoting by ps; and pyq
the values of p, and py after the shock wave has passed through the separation boundary and letting h = AH/
H*, then for p;;, we obtain

3)

Pu = P16’h

The pressure at the wave front, py, and the quantity q; = (py~ pi1)/pi; corresponding to it, may be ob-
tained by solving the problem concerning the decomposition of an arbitrary discontinuity arising as the re~
sult of an interaction of a shock wave with the boundary of separation of the layers, which may be regarded
as a contact discontinuity. This problem was solved by L. V. Ovsyannikov [10]. Based on his solution,

@=q+v(@E —1) “)

where we have introduced the notation

@) =Py () )

P

For ¢¥(g), L. V. Ovsyannikov obtained the expression

plg)— — 20 TpD Vite (VIFA—we Vitord_wal ®)
20 +p) VI+(T—wo+@+pp) VItyg

where 1 = (y +1)/2y. For q < 1, with an error not exceeding 1%,
Pig) =~ 1+ (2 — gl (7)

We introduce an effective relative distance ¢, , which we define as that value of ¢, at which the excess
pressure q, , in the case of propagation of a standard shock wave into a homogeneous atmosphere with pres-
sure pyg and density pjy of the undisturbed gas, would be equal to the excess pressure g in a real shock wave
propagating into a nonhomogeneous exponential atmosphere (g, = q(£+)), where the form of the function
glt,) is the same as the form of the function q(¢) in the standard wave.

We derive an expression relating ¢, and ¢. To do this, we form the difference {(¢1—¢),, accumulating
as a result of the nonhomogeneity of the atmosphere with the passage of the wave through the n-th atmos-
phere layer of thickness h. We note, moreover, that h << 1, and that, we can then put el =1 +h

8
€= (g~ ) 22 = — (e ®

*No exact solutions have as yet been found for this case since, with counterpressure taken into account,
the problem becomes nonself-similar.
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W5 245 10 4505 4y 09 02 ¢ We divide both sides of Eq. (8) by h and denote
fj . / _ the limit of the resulting expresgsion as h—0 by f(¢,):

F(E) = —w(g) ©)
q
/ ' The difference £, ~¢ is obtained by summing Eq.
4 — 79 (8) over the layers, with account being taken of Eq. (9).
//?7—_— Passing to the limit for h =0, and recalling that
/4:
/ & = dar  dH 10)
0.8 T re " rqfcos@]

we replace the summation by an integration

1t
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Fig. 2

In Eq. (11) the integration is with respect to £, not with respect to £ 4. To change to the variable ¢,
we differentiate Eq. (11), separate the variables, and integrate once again. We obtain

En
S L (12)
&= _S 14+P71CEe

Sa

where, we have introduced the notation

!

B = (rolcos 6])/ H* 13)

Equation (12) can also be readily obtained from the differential equation derived in [10]

=149 ] FhA (14)

since for the exponential atmosphere

Zinp®=—p

and the first factor on the right side of Eq. (14) is equal to —£(£ ).

In the case of an arbitrarily oriented cylindrical wave, when the cylinder axis is inclined at an angle
i to the horizontal plane, the problem becomes, in fact, a three-dimensional one. To reduce it to a two-
dimensional problem, we use, as was done earlier [5] in obtdining a solution for a strong wave, the law of
planar sections, i.e., we consider the propagation of the wave, generated at the point B on the cylinder axis,
in the plane P passing through B and perpendicular to the cylinder axis (Fig. 1). In this plane, the quantity
A =H* sec i plays the role of an effective unit of height; it is to be substituted in place of H* in all the
formulas. Consequently, we have

B = H* 7z C0s {|cos @, | (15)

where g is the positional angle, reckoned in the plane P from its intersection with the vertical plane pass-
ing through the axis of the explosion. By parametrizing with respect to the angle 6;, we reduce the problem
to a one-dimensional one. The meaning and the value of the parameter g are clarified below.

An approximate formula, expressing the relationship q(¢) and, in the given case, q(z ), was derived
n [8]; it has the form

m (16)
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The inverse relation ¢, (q) for k =1 and 2, may be expressed in the explicit form

By = n [Jgi (\ —';1 + 2)]”v (k=1

om e[ d]" e a9

For k=3 (¢, > 2, v = 3) this relation is transcendental; ¢, can then be obtained by the method of
successive approximations.

On the basis of Eqs. (9), (16), and (17), we obtain the following expressions for the functions f(z ) in
all three casges:

1) = 20y oy

myn

fo(By) = 5—?}%";’; £, (2 — 1)? (19)
3

fo &) = e, [In 5 5[y oy — 1

The form of the functions fi (¢ ) shows that the integral (12) cannot be expressed in terms of elemen-
tary functions but must be evaluated numerically. With the aid of this integral, we can determine, for an
arbitrary combination of v, v, and g, the £ corresponding to a given ¢, and then; after expressing the de-
pendence £ (¢, ) graphically, we can use it to perform the inverse process. Knowing £, » we can apply at the
point in question the approximate formulas derived for a shock wave propagating in a homogeneous atmos-
phere with counterpressure taken into account (8, 11], or we can use the corresponding tables given in
{12, 13], and so obtain all the characteristics of the shock wave, and the gas behind the shock wave.

The parameter g is a measure of the influence of atmospheric nonhomogeneity on the propagation of
the shock wave; we speak of it, therefore, as the nonhomogeneity parameter. Indeed, when g = 0, it follows
from Egs. (11) and (12) that ¢ = £, i.e., we have the case of a homogeneous atmosphere. The relationship
of ¢ with ¢, for various values of 8, for spherical and cylindrical waves, respectively, is shown in Fig. 2
and Fig. 3 (for ¢, = 2). Since ¢, is a single-valued function of q, we have displayed the q values on the
upper scale in Figs. 2 and 3. The dependence of q on ¢ for spherical (curve 1) and cylindrical (curve 2)
waves for large ¢, and small q is shown in Fig. 4.
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The dimensionless shock wave propagation velocity v for ¢, = 2 may be determined from the expres-
sion

g (20)

= Va (1+a)

where D is the dimensional velocity, ¢ is the sound speed, and x; = V1 + ng*”. Equation (20) is valid for
£, < 2; for ¢, > 2, we have in place of it the following:

2
[

V=

for a spherical wave:

b= (@) g, /2 + 117 (1 + ) (21)
for a cylindrical wave:
v =(r V(1 4 z,) 22)
The dimensionless time of passage of the wave is given by
e
T =y 1 § gvg (@3)
g
where 7y and ¢, are related by the equation
gy = Gt (24)
The transition from 7 to the dimensional time t is effected through use of the formula
= L) @)

The method presented here makes it possible to estimate quickly the excess pressure at the front of
a weak spherical or eylindrical shock wave propagating from the top downwards in a nonhomogeneous ex-
ponential isothermal atmosphere of small height; an estimate of the propagation speed can also be made.
A nonisothermal atmosphere can be readily accommodated by expressing the altitude scale for H* as a
function of the altitude itself.

The author thanks L. V. Ovsyannikov, V. P. Korobeinikov, L. A. Chudov, and Kh. 8. Kestenboim for a
valuable discussion of the problem.
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